--

BATCH FILE MAKING TUTORIAL

v. 1.00

BY JOHN "JUKAGA" GAdRS

--
This is a tutorial for making BAT files to run a Dark Forces custom level. The basics aren't that hard, but making a good advanced one can take some time. But heck, if you can handle INF, you can handle a simple BAT file! BTW, the best way to learn batch programming is to look at one. So find a good level’s BAT file and look at it.

Heck, you even get a few fonts with this package! How cool!

INFORMATION ON BATCH FILES

The Batch file is generally underused. It is very easy to make and can quickly automate some common DOS commands that you often do.

A BAT file is essentially a collection of DOS commands. If you don't know DOS, then it will be much more difficult for you. A few common commands are below:

RENAME A FILE

ren <input> <output>

Used to rename a file, <input> is the current name of the file, <output> is the new name.

COPY A FILE

copy <input> <output>

Used to copy a file, same as above.

MOVE A FILE

move <input> <output>

Same as above, but cuts and pastes instead of copying.

RUN A FILE

<filename>

The most common, <filename> is the filename, generally it will be an EXE or BAT or COM.

MAKE A DIRECTORY

md <dirname>

Creates a folder, where <dirname> is the name of it.

CHANGE TO NEW DIRECTORY

cd <dirname>

Changes to a new folder.

GO UP ONE LEVEL

cd ..

Just type it.

GO BACK TO ROOT DIRECTORY

cd\

Just type it. Goes back to C:\ or whatever drive.

SHOW A FILE ONSCREEN

type <filename> | more

Scrolls the contents of the file on the screen. If the file is long, you must add the | more command above.

ATTRIB (unknown)

attrib <filename> <?>

I have no idea what this does. If anyone can tell me, I'd appreciate it. It can be found in The Bounty Hunt's BAT file.

GOTO A SECTION

goto <section>

Goto a section in the BATCH. All sections are started by a line with :<name>. More on this in ADVANCED.

MAKE A CHOICE

choice /c:yn <text>

if errorlevel 2 goto <section>

Two-line statement, requires a section. <text> is what will be displayed immediately before the [Y,N] option. This way, if N is chosen, will goto <section>. If Y is chosen, will continue on in regular fashion.

Those are the usuals. You will learn a few more as we go on.

BASICS OF MAKING A BATCH FILE

These are the plain and simple basics.

Here's a variable that you can use on any command that will not display anything produced by that function:

<command> > nul

The > nul will cause all the little information from the command to be suppressed. Normally, a copy or move command will display information, but with this it will not display.

Something that I can't imagine using but is worth mentioning : you can add little tags to each command so that a viewer will know what each command is using. Just use :

REM <text>

Right at the beginning of each line. It tells the computer to skip over everything on this line. It will also not be displayed on the screen. To start off a BAT, you will almost always want to add a command to make it so that every command that is carried out won't be displayed on the screen. To do this, you add :

@echo off

From here on out, to make text be displayed onscreen, you must use :

echo <text>

Remember that this has to start EVERY line. If you want to make a blank line onscreen, you must use a special command :

echo.

After a big block of text, you may want to stop the constant scrolling of the screen to give the viewer a chance to read it. So you must use a command to pause it :

pause

Anywhere this is found, the scrolling will stop until the viewer presses SPACEBAR (a message is given so they know what to do). If you already have a long briefing typed up and don't want to retype it or use constant ECHO commands, then you can use the TYPE command that you learned in the last file. Also, to start off, you will usually want

to clear the screen of all data. So add :

cls

And it's done! Use this whenever you want to clean the screen. Now you will probably want some kind of a message indicating that your level is starting. So use the above command for adding text and type in some kind of a welcome and good luck message. Some authors use this space to add in something of a briefing. Now you want to start the level, so type in :

dark -u<gobfile>.gob <variables>

Where <gobfile> is the name of the GOB minus the extension. There are some variables that can be added to this command line :

-shots

enable screen shot mode (use Print Screen key)

-c

disable cutscenes

-l<level>

play a particular level (where <level>=yourlevel)

-x<d>

specify CD-ROM drive letter (where <d>=drive)

-f

don't check to see if FILES= is set high enough

-t

autotest mode (runs all levels briefly)

-g
create a text file with a list of all files that were opened during the running of the game

I doubt seriously that you will use many of these, but here they are anyways. Now the game will start up and the player will play your level. But you've still got more work to do! You can add stuff to do after the level is finished. So let's go with a thank you message using the echo command. You can probably take care of this.

This is just about it! There isn't much more in the way of basics for you to understand. However, most authors want their BAT to be impressive.

ADVANCED FEATURES OF BATCH EDITING

There are a huge abundance of advanced options, some of which I am just now finding out. In fact, I located the ATTRIB and CHOICE options just as I was writing this! So here we go......

A very common feature is to use IF THEN statements. These are relatively easy. The most common is IF EXIST and IF NOT EXIST. These are used to check for a certain file. Like this :

IF EXIST <filename> <action>

IF NOT EXIST <filename> <action>

Where <filename> is the name to check for and <action> is the action to perform. One I used a lot in Library.BAT is :

if exist secbase.lev goto secbaselev

if exist seclev.old ren seclev.old secbase.lev

Their functions should be self-explanatory. A fun thing to do is make an image in your BAT. It will be displayed onscreen. Making one isn't exactly easy, and I strongly recommend you check out The Bounty Hunt for a good example as to how to make one. But here's the characters you can use (goto the TXT file to read easier) :

Ü

Makes a mark on the bottom half of the line

Û

Makes a mark over the entire line

ß

Makes a mark over the top half of the line

²

Makes a full line mark in a lighter color, for shadow

A very widely used function is the ability to create a section and a goto command. Here's an example :

goto check_for_files

:check_for_files

The : starts off a new section with the name check _for_ files, if you want to skip straight there, you will use goto check_for_files. Relatively easy. Remember that in a normal action, unless it hits a goto command, the computer will run straight down the line, getting into new sections as they occur.

To make a check for files, get a list of the necessary files that, if located in the Dark directory, will interfere with gameplay. These include anything starting with secbase.*. Now go to your check section and add :

if exist <filename> goto <section>

if exist <filename2> goto <section2>

The sections should have a similar name to the file they are dealing with. In those sections pointed to, you may have something like this :

:section

echo WARNING! <filename> EXISTS IN YOUR DARK DIRECTORY! REMOVE IT!

echo TO CONTINUE AND RENAME, CHOOSE Y.

choice /c:yn Continue?

if errorlevel 2 goto end

ren <filename> <filename2>

goto check

If you are checking for a directory, you must use :

if exist <directory>\nul

The \nul after it is included as if it is a file in the directory, but it isn't. It will tell the computer that you're looking for a directory, not a file.

This will accomplish everything. Of course, then you need a section entitled end with an end statement in it, at the very end. After the level has been run, you will want a to use the same list of files for :

if exist <filename2> ren <filename2> <filename>

Corresponding to the section directly above. Use this format for all of your renamed files. Most BATs have an :end and an :endgame, so that you can have :end for directly ending, and :endgame for a thank you after running the mission. You can probably handle this. Now I want to delve into something :

CHOICES

It is possible to make a Yes/No choice in a batch file. The syntax is as follows:

choice /c:<choices> <text>

if errorlevel <#> <command>

You can have unlimited if statements. The number corresponds to the choice number on the choice statement. Here's a sample :

choice /c:yn Continue?

if errorlevel 2 goto end

Here, it will display :

Continue?[Y,N]

And if you hit N, then it will goto the section entitled end. What's more, you can change the choices :

choice /c:ynm ?

if errorlevel 2 goto end

if errorlevel 3 goto nearend

if errorlevel 1 goto start

Here it will display ?[Y,N,M] And if you hit Y, it will goto section start, if you hit N it will goto section end, if you hit M it will goto section nearend. I currently do not know what the /c: does, but I would not recommend playing with that. Now back to the normal stuff :

Let's say you are making a BAT for something other than running a level. If you wanted to make a BAT to install something, here's a feature you can use. When the user runs the batch, they will type :

<batchname> <variable1> <variable2> <so on....>

Now, whenever you want to use in the BAT what was specified can be entered with :

blah blah blah %1 blah blah blah %2

Here, whenever %1 is specified, variable1 will be entered. Wherever %2 is specified, variable2 is specified. And so on. Presumedly you can have unlimited variables, but I don't think you'd want to.

Well, I think that that is pretty much it. Good luck!

